

Hydropower Plants: Generating and Pumping Units Solved Problems: Series 6

1 NON-DIMENSIONAL NUMBERS FOR A TURBINE MODEL TEST

When performing model testing, an accurate calculation of the non-dimensional numbers is of key importance for the operation of hydraulic turbines and the transposition of the efficiency from the model scale to the prototype scale. Three non-dimensional parameters are particularly important: the IEC speed factor n_{ED} , the IEC discharge factor Q_{ED} , and the Thoma number σ .

- 1) When performing the model test of a turbine, which important quantities need to be monitored for comparing the efficiency and the operating condition of the prototype scale with that of the reduced scale turbine?
 - Also, which component/parameter must be exactly the same in the prototype and model scales?
- 2) Express the non-dimensional parameters n_{ED} and Q_{ED} as functions of the reference diameter D_{ref} , the discharge Q, the turbine specific energy E, and the rotational frequency n [s⁻¹].
- 3) Express the specific speed ν and IEC specific speed n_{QE} as functions of Q_{ED} and n_{ED} .

For questions 4) to 6), use the information about the installation of the turbine and the setting level h_s which are depicted in Figure 1.

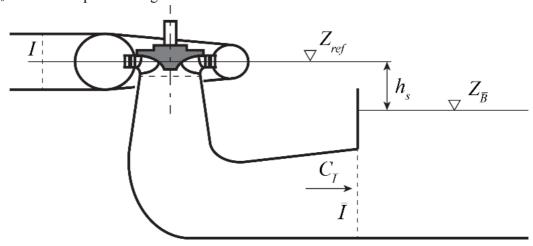


Figure 1: Machine setting level

4) Express the Net Positive Suction Specific Energy (*NPSE*) as a function of $gH_{\overline{I}}$, Z_{ref} , and the saturated pressure p_v .

10.12.2024 EPFL/STI Page 1/2

5) Express the Thoma number σ defined by $\frac{NPSE}{E}$, using the setting level $h_s = Z_{ref} - Z_{\overline{B}}$, the flow velocity $C_{\overline{I}}$, the saturated pressure p_v and the atmosphere pressure p_a . Take the singular losses term $gH_{r\overline{I}+\overline{B}}$ into account, knowing that the draft tube outlet can be considered as a water outflow with $K_v = 1$.

6) Describe what is the risk of operating the plant at a low Thoma number.

10.12.2024 EPFL/STI Page 2/2